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The development of a new semiempirical SCF MO method (SINDO1) at the 
INDO level of approximation is described. The method takes an explicit 
account of the orthogonality of the basis set in the calculation of core- 
Hamiltonian elements, approximates the effect of the explicitly ignored inner 
shell electrons through a pseudopotential,  allows for a distinction between p(r 
and pzr orbitals on an atom in the calculation of electron-nuclear attraction 
and employs an improved treatment of the non-diagonal core elements over 
the prescription used earlier in the SINDO method. A brief comparison of 
SINDO1 with the M I N D O / 3  and MNDO procedures is presented. 
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1. Introduction 

Quantitative prediction of energetic and structural features of molecules has been 
one of the most important objectives of quantum chemistry. Generally practical 
considerations force one to obtain an approximate solution using either the so 
called ab initio SCF MO technique [1-4] based on the single-determinantal 
approximation or the semiempirical SCF MO methods [5]. It is well known that 
the total molecular energies predicted even by very accurate single-determinantal 
ab initio SCF MO methods have chemically important errors because of failure to 
take into account electron correlation. In spite of this difficulty in predicting 
accurately the total energy of molecules, the energy changes associated with 
certain special types of chemical processes [2, 6, 7] can still be obtained with 
reasonable accuracy by the ab initio methods. The successful prediction of heats of 
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reaction in these cases depends heavily on the cancellation of errors which are 
primarily of two different types. Firstly, by limiting the size of the basis set, ab 
initio calculations yield molecular electronic energies which are different from the 
exact Hartree-Fock values and this introduces inaccuracies into the calculated 
heats of reaction. The neglect of the effects of electron correlation is the source of 
further errors in the estimated heats of reaction. The choice of the basis set 
employed in the ab initio study is important for an effective cancellation of errors 
of the two types. Thus, a particular set may not be good in this regard for different 
types of reactions [2]. 

The semiempirical SCF MO procedures available for predicting the molecular 
energetic and structural features have attempted to provide theoretical frame- 
works which are simple and inexpensive from computational point of view and at 
the same time are reliable and accurate enough to be of chemical usefulness. They 
are based on integral approximations which simplify drastically the LCAO SCF 
MO treatment for molecules and employ adjustable parameters in order to 
enhance the accuracy of prediction. These methods are especially suitable for the 
study of reaction paths where investigation of the potential surface is necessary. 
The literature contains proposals for various semiempirical all-valence-electron 
SCF MO methods at different levels of approximations. The treatments 
developed by Fischer and Kollmar [8], Boyd and Whitehead [9] and Eaker and 
Hinze [10] are at the CNDO level of approximation [11], whereas MINDO/1 
[12], MINDO/2 [13], MINDO/3 [14] and the SINDO [15] (symmetrically 
orthogonalized INDO) methods are at the INDO level [11]. Recently, Dewar and 
co-workers [16] have documented a more sophisticated and accurate method 
(MNDO) based on the NDDO approximation [11]. 

In this paper we present a new semiempirical SCF MO procedure (SINDO1) at 
the INDO level of approximation. In line with SINDO but contrary to the 
approach adopted in the other semiempirical treatments described above, 
SINDO1 takes an explicit account of the orthogonality of the basis set of atomic 
orbitals (AO) in the calculation of core-Hamiltonian elements involving them. In 
SINDO1, only the valence-shell electrons are considered explicitly in the cal- 
culation, the inner-shell electrons being treated as part of the core (frozen core 
approximation). The effect of the inner-shell on a "valence-electron only" 
calculation of the present type has been simulated through a pseudopotential term 
of the form suggested by Zerner [17]. This pseudopotential approximates the 
formation of valence basis functions which are orthogonal and non-interacting 
with the core. Maintaining a distinction between the ptr and p~r orbitals on an 
atom in the calculation of core-Hamiltonian elements through a simple prescrip- 
tion is another important feature of SINDO1. Finally the CNDO/2 approxima- 
tions which were still in SINDO are now modified in the spirit of CNDO/1 on the 
INDO level. 

2. Basic Theoretical  Framework 

As in the original INDO prescription [11] we neglect differential overlap in all the 
two-electron integrals except for the one-center exchange integrals. It is well 
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known [18] that L6wdin's symmetrically orthogonalized basis set of atomic 
orbitals [19] (OAO) satisfy the zero differential overlap approximation to a good 
degree of accuracy. While the Coulomb repulsion integrals over the O A O  basis 
are similar in magnitude to their values in the overlapping basis [20-22], ortho- 
gonalization produces a much larger change in the core-Hamiltonian matrix 
elements [20, 21]. Therefore,  in the present study only the core-Hamiltonian 
elements were interpreted over the OAO basis and the Coulomb repulsion 
integrals and one-center exchange integrals entering the theory were considered 
local in character and were estimated exactly in the same manner as in INDO [11]. 
Thus the Coulomb repulsion integrals between any AO of atom A and any AO of 
atom B were given a common value YA~3 and this was evaluated from the 
analytical formula for the two-center Coulomb repulsion integral between 
Slater's s-type AO's on atoms A and B. F: and G ~ integrals [11] used to estimate 
the one-center exchange integrals were those employed in INDO. 

We shall next consider the diagonal and off-diagonal core-Hamiltonian matrix 
elements. Based on using the frozen core approximation and Zerner 's  form of 
pseudopotential to approximate the inner-shell outer-shell repulsion, core ele- 
ments over the AO basis is written as 

- Si, l~BelsB (i on atom A). (1) 
B ~ A  B : ~ A  

Here  Ui represents the kinetic energy Tu of an electron in AO i and its potential 
energy in the field of the core of the atom to which the orbital belongs. V~ is the 
attraction between an electron in the AO i and the core of a different atom B. The 
pseudopotential  term (the last term in (1)) depends on the square of the overlap 
Si, lsB between AO i and the l s  AO of atom B. ex~, which is the diagonal element 
of the Fock matrix for the core AO lsB, can either be chosen from X-ray data on 
atoms or from the molecular calculations [17]. 

We found it necessary to maintain a distinction between the po- and p~r orbitals on 
an atom in the calculation of core-electron attraction, V~ for an improved 
description of ordering of tr and ~r MO levels in the unsaturated molecules. By 
calculating Vv B and Vv~ theoretically over Slater-type AO's,  this distinction was 
incorporated into the theory in a natural way. However,  a correction to the 
theoretically estimated Vp~ and Vp~ has been introduced in order to account for 
the neglect of such directional effects in the calculation of two-electron Coulomb 
repulsion integrals involving po- and p~" orbitals. We derive the form of the 
correction by considering a po- electron on atom A interacting with the core and a 
total number of ZB valence electrons on a different atom B. The distribution of the 
valence electrons on atom B is averaged so that they are replaced by that of Z~ 
electrons of s-type. The repulsion between an electron in the po" orbital on A, 
denoted by ptrA with this average distribution on B is ZByp  . . . . .  and the 
underestimate of repulsion, while using YAB (calculated as YsA,s~) in place of 
Yp . . . . .  is ZB (YP~A.sB- YAB), which must be the correction to the theoretically 

B calculated value for Vp~A. A similar consideration shows the correction to the 
B theoretical value of Vp= A is ZB (Yo . . . . .  - y ~ , ~ ) .  We estimate these corrections 

by calculating y ~  .... Yp~A,~ and yp . . . . .  theoretically over Slater-type AO's.  
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Based on the Mulliken approximation [23] for the integrals of the form V A and 
the assumption [24] that the two-center kinetic energy integrals, T~ i are propor-  
tional to the square of the corresponding overlap integrals, Sz~, the expression for 
core elements/-/0 can be written as 

H,j = �89 + ~ ) S , ~  +L~j 

where, 

(2)  

L, j  = - �89 T .  + T~j)Sij(1 - s~j). (3)  

In order to account for the deficiency of the Mulliken approximation we introduce 
a correction to Hii. The form of the correction adopted here is a modification of the 
expression used in the SINDO method [15] 

AHgi = �88 + KB),-qii(fAhii +fBh/i). (4) 

Here  orbitals i and/" belong to atoms A and B respectively. The K ' s  are empirical 
parameters dependent  on the nature of the atom. They have different values, K ~ 
and K = for tr and ~r types of interactions. The condition that the expression for H~ i 
should go to that for H ,  when i = j, is satisfied only when the correction AH~j 
vanishes for i = j. In order  to fulfil this requirement we introduced the factor 
f (RAB)  in (4) and chose its functional form such that f(RAB) ~ 0 as RAB-~ 0. We 
employed a simple form 

f ( R A ~ )  = 1 - e -'~RAB (5) 

a was taken as 1 for Li and Be and 0.4 for H. For the other atoms the formula 
a = 4 n / Z  - 1 was used. Here  n is the main quantum number and Z the effective 
core charge. In cases where these atomic parameters did not yield good results for 
energies and geometries, c~ was adjusted empirically for particular bonds given 
below. Since f is different for most atoms, Eq. (4) contains implicitly a polarization 
term proportional to ( h , -  hu). 

hil in Eq. (4) is the average of H ,  over all AO's  of same 1 value on atom A, but 
neglecting the nuclear-electron attraction and pseudopotential  terms which 
involve atoms other  than A and B. Thus, for an s orbital on atom A 

2 
hSA,SA "~ USA+ V SBA -- S sA,lsBE lsB 

By limiting hii and hjj- in Eq. (4) to contain integrals involving atoms A and B only, 
the correction term hHij remains "local" in character and its improper increase in 
magnitude with increase in molecular size is avoided. 

We shall next consider approximations to the core-Hamiltonian elements in the 
O A O  basis {h }. Starting with the L6wdin transformation [19] 

H ~ = S-1/2HS -1/2 

and a binomial expansion of S -1/2 to second order in the overlap integral, the 
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core-Hamiltonian elements, H~ and H~ are given by [21] 

H i;~ = Hii(1 3 ~)) 1 2 + ~ Z S - Z H~jS~j + ~ Z S~I-I,~ 
j• jr j#i 

+1 E E [3H@'~jkSki "4- SljHjkSki "~ 3SijSjkHki] ( 6 )  
j~i k#i,i 

H ~  = H,j- �89 + Hjj)S,~ + ~ X [~S,~S~j(H,, + I-t,~) 
kC:i,j 

+ �89 -- (H~kSk i + SikHkj)], (7) 

The terms in the last sum in Eqs. (6) and (7) are all expected to be small. Here  each 
product in the square bracket either involves three atomic centers or contains a 
core element involving two different AO's  on the same atom. Neglecting these 
terms, expressions for H~/ and HiXj are simplified as 

= Sij(~Uii-Jt-�88 - ~, UijSij 
ir j#i 

H~i = Hq - ~(Hil + Hij)Sq. 

Substituting Eq. (2) into Eq. (8) we obtain 

(8) 

(9) 

H ~  = H ,  + �88 E S ,~,.(H, - ~ j )  - Z S,jLij. (10) 
j#i j#i 

The terms within the second sum, involving the product of small numbers (�88 2) 
and differences, ( H , - H H ) ,  are likely to be small and are neglected. 

Since in many cases the diagonal core elements for an s orbital, H,~ is higher in 
magnitude than that for a p orbital, Hpp, the second sum in Eq. (10) generally has 
the effect of increasing the difference between H x~s and H~p, making H,~ more 
negative. The terms in the last sum in Eq. (6), which have been neglected, have a 
similar effect. In order to maintain proper  relative order between H,% and H~p 
under the neglect of such terms, we further neglect the repulsive contributing to 
H~, from those terms in the last sum in Eq. (10) which involve both s and p 
orbitals. Thus, the diagonal core elements in the O A O  basis for the s orbitals are 
given by 

2t HsAsA =HsA~A-- E SsAsBL . . . .  (11) 
B ~ A  

where the subscript SA implies an s orbital on atom A. H~ for the p orbitals is 

H~ = H . -  E SqLij. (12) 

In order to preserve rotational invariance of the method various bicentric terms in 
Eq. (1) contributing to H .  as well as the terms in the last sum in Eq. (12) are all 
calculated first in the local coordinate system and are then transformed to the 
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molecule-fixed coordinate system. The computation time for this transformation 
is negligible compared to the integral calculation and SCF iteration. Substitution 
of/-/~i of Eq. (2) along with the correction term of Eq. (4) into Eq. (9) leads to 

H~. = Li] + �88 + KB)Sij(fAh,I + fBhjj). (13) 

It is of interest to compare Eq. (13) with the expression for Hij which was adopted 
in the SINDO method [ 15] and was derived based on the commutator relationship 
[r, h] = ip, where r, h and p are respectively dipole, core-Hamiltonian and linear 
momentum operators. 

Neglecting the polarization factor which involve the difference (Hu-Hj j ) ,  the 
SINDO expression can be written as 

H~. 1 dSij +�88 (14) 
RAB dRAB 

It is clear that under the restrictive conditions: f(RAB) = 1 and K~  = K~ = KA, 
Eq. (13) goes to Eq. (14) if we substitute 

1 dS~ i 
Lij = RAB dRAB" (15) 

Eqs. (3) and (15) provide two alternate choices for L~j, but neither of them proves 
completely satisfactory to be useful in a semiempirical method of the present type. 
( 1 / R ) ( d S / d R )  diverges for certain interactions like those involving ls and 2ptr 
and also 2s and 2ptr. Thus, the behaviour of this term for these interactions at 
short distances is of doubtful significance. Further, unlike the case with other 
interactions, this term is positive for the case of two 2ptr orbitals at the distances of 
multiple bonds involving many of the first row atoms. In such cases there occurs a 

A partial cancellation of terms in (13) and HEpo-A, Epo-B remains small. This leads to 
spurious high-lying occupied o- MO levels in several unsaturated molecules. 
These considerations indicate a failure of Eq. (15) for the interactions involving 
2ptr orbitals. Eq. (3) is free from this limitation of Eq. (15), but proves unsatis- 
factory at the long distance region. A third possibility for Lq would be to calculate 
T/j of/-//i = T/i + V0. exactly as linear combination of overlap integrals and V/j by 
the Mulliken approximation. We have not pursued this alternative here, because 
it would introduce further integrals without assurance of a better overall balance 
together with Eq. (4). 

As shown earlier, the form of Lq as given by (3) is derived based on the assumption 
that the kinetic energy integral, T~ i is proportional to the square of the overlap, S~ i. 
This assumption is fairly accurate when two 2p~r orbitals are involved, but in other 
cases the kinetic energy integral generally falls off faster than the square of 
overlap. In fact, for the l s -  ls  case, the approximation: T/j =�89 + T/i)S 3. is 
more appropriate. This suggests that Lii should, in general, fall off with distance 
faster than proportional to S(1 -S) .  Ltj values predicted by Eq. (15) shows such a 
behaviour. Based on the consideration of various factors discussed above we 
chose L~ i values predicted by Eq. (15) for the 2p~r-2pzr, 2 s - 2 s  and l s - l s  
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interactions as guide in modifying Eq. (3). Unfortunately, however, we were 
unable to find a simple modification of Eq. (3) which is successful in reproducing 
the Lij values obtained by Eq. (15) for all these interactions and we proceeded as 
follows. Noting that the one-center kinetic energy integral, Til is proportional to 
the square of the orbital exponent ~'i we modified Eq. (3) as 

2. Sij (1 - Sij) 
L'J +CJ) (16) 

where, p = �89162 + ~'j)RAB. 

Eq. (16) reproduces reasonably well the Lq values predicted by Eq. (15) for the 
2s - 2s and 2p~- - 2pzr interactions over a wide range of exponents and distances 
and we employed this relation for estimating Lq values for the 2 s -  2s, 2 s -  2p, 
2po- - 2po- and 2p~- - 2p~r and ls - 2ptr interactions. For the ls - ls  case we used 

S(1 - e  -~ 
L~ i - (17) 

l + p  

and for the interaction ls -2s ,  average of the values of L~ i predicted by Eq. (16) 
and Eq. (17) was adopted in the present study. 

We shall next discuss the choice of the quantities ~'A, Us, Up and e l sA for various 
atoms. Generally we have adopted the values suggested in the literature for these 
quantities, but in some cases we modified the values in order to enhance 
agreement with experiment in certain respects. 

The orbital exponents for s and p AO's of a given atom were treated as same thus 
making the exponents dependent only on the nature of atom. A more sophisti- 
cated scheme could use different exponents for s and p orbitals. For Li, Be, B and 
C the exponents determined by minimizing the energy of isolated atoms [25] were 
employed, but for F, an exponent close to that obtained by Burns' rules [26] was 
adopted. This modification for F proved useful in providing improved results on 
geometry in fluorine-containing molecules. The exponents for N and O were 
obtained by an interpolation of the values for other atoms. For hydrogen a value 
close to that suggested by Fischer and Kollmar [8] has been adopted in the present 
study. 

The one-center one-electron core integrals, Us and Up for various atoms, with 
exception of the Us values for H, N, O and F, were estimated using the one-center 
exchange integrals and the average ionization potentials given by Pople and 
co-workers [11] and following their prescription. For Us values of H, N, O and F 
somewhat higher absolute values than those obtained by the above prescription 
have been employed. This was achieved by adding 1.06 eV to IH and 3 eV to Is for 
N, O, F. The modified Us for H led to a better description of hydrogen charges in 
the hydrides, whereas the changes in N and O led to improved bond angles in NH3 
and H20 respectively. 

As in the AAMOM method of Zerner [27], elsA values for C, N, O and F were 
estimated as the atomic ionization energies of ls electrons obtained from ESCA. 
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For Li, Be, B an increase in the absolute values for e seemed more favorable in our 
all valence electron method. We took elsu = -3.5 Hartree, el~Bo = -5.02 Hartree, 
elsB = - 7 . 5  Hartree. 

In summary Is, Ip, F 2, G 1 are taken from Pople [11] and elsA values are from 
Zerner [27], except as noted. 

3. Calculation of Binding Energies and Molecular Geometries 

The total energy of the molecule, Emo~ is obtained as 

E~ol = P q ( H i i + F i t )  + L --if-f--. 
i j A < B  ] ~ A B  

(18) 

Here P~ and F~ are respectively the elements of the bond order and Hartree- 
Fock matrix. The last sum in Eq. (18) represents the potential energy of repulsion 
between the cores which are assumed, under the frozen core approximation, to be 
point charges, ZA'S. 

In view of the neglect of the explicit consideration of the inner-shell AO's in the 
calculation Ernol of Eq. (18) represents only the valence-electron energy. 
However, it has been shown [17] that the true total energy of the molecule, 
obtained from the calculation using a basis set expansion over the valence-shell as 
well as the inner-shell AO's, has the molecular part mainly reflected in the 
valence-electron energy. Thus, it is still meaningful to use E~,o~ in predicting the 
geometric and energetic features of molecules. The calculated binding energy, EB 
at equilibrium geometry of a molecule is obtained as the difference between the 
energy of the molecule (Emol) and that of its constituent atoms. The energies of 
atoms, EA are calculated from single-determinantal wavefunctions using the same 
approximations and integral values as are employed in the molecular calculations. 

The experimental binding energy of a molecule is obtained from its heat of 
formation at 0~ by subtracting the heat of formation of the constituent gaseous 
atoms at the same temperature (AH~) and the zero point vibrational energy of 
the molecule. EA values for the various atoms are derived and AH~ values taken 
from JANAF tables [28]. A collection of values of fixed atomic parameters is 
presented in Table 1. 

Molecular geometries were defined in terms of the internal valence coordinates 
(IVC), which are the bond lengths, bond angles and dihedral angles. The equili- 
brium geometry was determined by minimizing energy with respect to the IVC's 
subject to certain symmetry constraints imposed to reduce computation time. 
Constraints were specified based on the symmetry at the observed equilibrium 
geometry of the molecule. In several cases, particularly when the molecule is of 
low symmetry, calculations have been performed by relaxing such constraints in 
order to account for a possible difference between observed and predicted 
symmetry. 
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Atom H Li Be B 

EA --0.52 --0.19809 --1.03379 --2.63363 
H ~  0.08228 0.06061 0.12309 0.20971 
Us -0.52 -0.19809 -0.69125 -1.39135 
Up -0.13009 -0.54434 -1.14681 
els -3.5 -5.02 -7.5 

Atom C N O F 

EA --5.42015 --10.13754 --15.97148 --23.77375 
H~o 0.27023 0.17927 0.09400 0.02926 
Us -2.31446 -3.63827 -4.91604 -6.37531 
Up -1.97826 -3.09529 -4.27909 -5.63853 
els -10.44 -14.66 -19.55 -25.21 

The geometry optimization was carried out by an approach based on the Newton- 
Raphson method [29], Denoting the IVC's by a column vector, q, the improved 
set of IVC's, qk+l is generated from the old set, qk by the recursion 

qk+l = qk _ (Ak)-lgk. (19) 

Here g is a column vector whose components are the partial derivatives of energy 
with respect to each of the IVC's and A denotes the matrix of second partial 
derivatives of energy 

c~2Emol 
A i i =  Oqi Oqi " (20) 

The calculation of the Hessian matrix A is prohibitively expensive. We, therefore, 
usually followed for the calculation of equilibria a simplified approach of calculat- 
ing only the diagonal elements of A and setting its off diagonal elements to zero, 
thus neglecting the coupling between IVC's. 

It may be mentioned that alternative procedures [8, 30], which neglect such 
coupling have successfully been applied to a large number of molecules. However, 
in certain cases, where the above approach led to difficulties in locating the 
minimum, optimization was carried out with the coupling elements of A. The 
derivatives were calculated by finite difference from SCF calculations performed 
at two different displacements for each IVC. The step size of displacements were 
initially chosen as 0.01 J~ for the lengths and 1 ~ for the angles. For the final 
refinements the step size was reduced to 0.001 ~ and 0.1 ~ with the exception of 
some of the dihedral angles which could be optimized only with a step size of 1 ~ 
Cycling process was continued until the sum of squares of the gradients, g;'s was 
less than 0.00001 and ]q~+~ -q~] was smaller than the corresponding step size for 
all i. 

The parameters, K2  and K~ for various atoms and aA for different atom pairs 
have been adjusted, by trial and error, so as to best reproduce the binding energies 
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Atom H Li Be B C N O F 

~" 1.17 0.64 0.96 1.25 1.55 1.90 2.15 2.40 
K "  0.099 0.140 0.115 0.073 0.0654 0.077 0.100 0.151 
K = -0 .040 0.020 0 0.024 0.024 0.056 -0.025 

of certain reference molecules. Reference molecules employed in the 
parametrization study were chosen to represent different types of bonding 
situations of various atoms. In view of the dependence of both the calculated 
binding energy and equilibrium geometry for a molecule on the parameter values, 
the optimization of geometry of the reference molecules and parameters were 
carried out simultaneously. The parameters involving C and H were first fixed 
from calculations on reference hydrocarbons. The parameters involving other 
atoms were determined, in steps, from a study on molecules containing a new 
atom in combination with other atoms already parametrized or from a study on 
molecules with a new atom pair interaction not already considered in the 
parametrization. Table 2 shows parameters (, K ~ and K ~ for different atoms. 
Values for the bond dependence of a are given in Table 3. 

4. Comparison of SINDO1 with MINDO/3 and MNDO 

"Of the semiempirical SCF MO methods available so far, MINDO/3 and MNDO 
have been most extensively applied to the study of structural and energetic 
features of molecules involving the first row atoms and hydrogen. Dewar and 
Thiel [16a] noted that MNDO represents a major improvement over MINDO/3. 
Its superiority was attributed [16a] to taking an improved account of the direc- 
tionality of bonding by making allowance for the dependence of the bicentric 
two-electron integrals and core-attraction integrals on the orientation of the AO's 
involved. The resulting MNDO treatment is, however, much more complex than 
MINDO/3, for whereas MNDO requires the evaluation 22 distinct bicentric 
two-electron integrals for a pair of dissimilar atoms, there is only one such integral 

Table 3. Adjusted bond dependent parameter a 

Atom B: H Li Be B C N O F 

aH 0.8 0.5 0.362 0.425 0.5 0.55 

abe 0.05 
aB 1.0 
aN 1.8 0.531 0.525 
a o  0.23 0.32 0.339 
aF 0.368 0.168 0.182 0.135 0.071 0.075 0.126 
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Table 4. Average errors in various semiempirical MO methods for molecules with first row atoms 

SINDO1 MINDO/3 MNDO 

Length (A) XY 0.028(181) 
Length (/~) XH 0.015(105) 
Angle (Degrees) XYZ 2.5(53) 
Angle (Degrees) XYH, HXH 2.6(76) 
Binding energy (kcal/mol) E 8.3(132) 
Ionization potential (ev) I 0.80(113) 
Dipole moment (Debye) D 0.38(68) 

0.022(91) 0.030(142) 
0.017(67) 0.017(89) 
6.8(22) 2.8(43) 
4.1(43) 3.0(66) 

11.3(73) 9.0(118) 
0.84(52) 0.48(67) 
0.42(34) 0.35(49) 

The total number of compounds or values compared is given in parentheses 

to be calculated in the INDO-based procedures like MINDO/3 .  SINDO 1 retains 
the simplicity of INDO approximation in the calculation of two-electron integrals, 
but employs a much more elaborate prescription for estimating the core-Hamil- 
tonian elements compared to the earlier INDO-based procedures as well as 
MNDO. In SINDO1 directional effects are included in various bicentric terms 
contributing to Hil (see Eqs. (1), (11) and (12)) by making allowance for the 
distinction between s, ptr and p~- orbitals on an atom in the treatment of such 
terms. 

In the following papers detailed SINDO 1 results for a wide range of molecules will 
be compared with the experimental findings and the predictions based on 
M I N D O / 3  and MNDO. Here  we summarize the predictive capability of these 
three methods on a statistical basis. Table 4 compares the average absolute errors 
for various properties calculated by these methods. The available M I N D O / 3  data 
are not properly representative, making the errors quoted under M I N D O / 3  
somewhat unreliable [32], but Dewar and coworkers [16] have concluded that 
MNDO represents a remarkable improvement over M I N D O / 3  in the accuracy of 
prediction of various properties. Further, MNDO is free from most of the major 
deficiencies or errors of M I N D O / 3  which are associated with the predictions on 
the ordering of MO levels in the unsaturated compounds, heats of formation 
of molecules with triple bonds and N - N  bonds, heats of formation and geometry 
of many fluorine containing molecules and finally the bond angles. The superiority 
of MNDO in these areas was attributed to an inherent superiority of the N D D O  
approximation on which MNDO is based. It is interesting to note that the average 
absolute errors in binding energies [31] bond lengths and bond angles obtained 
from SINDO1 calculations are smaller than the average absolute errors in the 
corresponding quantities given by MNDO. SINDO1 and MN D O  predict dipole 
moments with a similar accuracy, but MNDO is clearly superior for the ionization 
potentials calculated via Koopmans'  theorem. In summarizing our findings we can 
state that as in MNDO, most of the major deficiencies of M I N D O / 3  discussed 
above are overcome in SINDO1. It is clear that the major achievements of 
MNDO have been realized in SINDO1 in a much simpler way through an 
improved treatment of the core-Hamiltonian elements. 
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